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Abstract. Models of plant–plant interactions underpin our understanding of species coex-
istence, invasive plant impacts, and plant community responses to climate change. In recent
studies, models of competitive interactions failed predictive tests, thereby casting doubt on
results of many past studies. We believe these model failures owe at least partly to heterogeneity
in unmodeled factors (e.g., nutrients, soil pathogens) that affect both target plants and neigh-
boring competitors. Such heterogeneity is ubiquitous, and models that do not account for it
will suffer omitted variable bias. We used instrumental variables analysis to test for and correct
omitted variable bias in studies that followed common protocols for measuring plant competi-
tion. In an observational study, omitted variables caused competition to seem like mutualism.
In a quasi-experiment that partially controlled competitor abundances with seeding, omitted
variables caused competition to seem about 35% weaker than it really was, even though the
experiment occurred in an abandoned agricultural field where environmental heterogeneity
was expected to be relatively low. Despite decades of research, consistently accurate estimates
of competitive interactions remain elusive. The most foolproof way around this pr)oblem is
true experiments that avoid omitted variable bias by completely controlling competitor abun-
dances, but such experiments are rare.
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INTRODUCTION

Estimates of plant–plant interactions underpin our
understanding of species coexistence (e.g., Hart et al.
2018), invasive species impacts (Parker et al. 1999), and
plant community responses to climate change (e.g., Adler
et al. 2012). There are longstanding concerns about
methods used to estimate plant interactions (Antonovics
and Levin 1980, Damgaard and Weiner 2017), and these
concerns have been magnified by the discovery that
empirically based competition models can generate
grossly inaccurate predictions, and estimates of competi-
tive interactions depend heavily on methods used to esti-
mate them (Adler et al. 2018a, Tuck et al. 2018). These
discoveries cast doubt on results of many past studies
and show plant interaction research is not immune to the
increasingly recognized “reproducibility crisis,” or failure
of research results in ecology and other fields to hold up
across studies (Baker 2016, Fidler et al. 2017). Detto
et al. (2019) helped explain failings of plant competition
models by showing estimates of competitive interactions
are biased when competitor abundances are measured

with error. Our paper resembles Detto et al. (2019) in that
we explore bias in competition models, though the bias
we consider stems from a different mechanism.
Plant interactions are analyzed with models in which

response variables describe target plants (e.g., density,
biomass, survival, growth), predictor variables describe
neighbor plants (e.g., density, cover) and model parame-
ters quantify interaction strength. The parameters are
estimated from true experiments, quasi-experiments, and
observational studies, study types differing in how treat-
ment (i.e., neighbor) variables are controlled. True exper-
iments precisely control neighbor values. For example, in
greenhouse experiments, preplanned neighbor densities
can be achieved by transplanting seedlings into pots
(e.g., Thompson et al. 2015). Quasi-experiments differ
from true experiments because neighbor values are only
partly controlled using treatments (e.g., seeding, herbi-
cide). For example, two plots sown with identical neigh-
bor seed densities generally achieve different neighbor
plant densities (e.g., Rinella et al. 2007, Godoy and
Levine 2014, Petry et al. 2018). Finally, in observational
studies, neighbors are naturally occurring and uncon-
trolled (e.g., Freckleton and Watkinson 2001, Adler
et al. 2012). Quasi-experiments and observational stud-
ies are far more common than true experiments and are
less reliable because of an additional assumption needed
to estimate causal relationships. The assumption is that
no variables (e.g., nutrient or soil microorganism con-
centrations) that influence both neighbor and target
variables are omitted as model predictors (Fig. 1A). If
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this assumption is violated, estimated effects of neigh-
bors on targets will suffer omitted variable bias (Rencher
2000, Gelman and Hill 2007). To see how omitted vari-
able bias works, one can imagine an unmeasured variable
such as topsoil depth or nitrogen concentration causing
some quadrats to support low neighbor and target abun-
dances and other quadrats to support high neighbor and
target abundances, in which case graphs of neighbor ver-
sus target values will indicate beneficial relationships
even when relationships are in fact competitive
(Fig. 1C).
The assumption that no sources of abiotic and biotic

variation jointly influence targets and neighbors typi-
cally goes unstated, even though such variation is ubiq-
uitous across a range of spatial and temporal scales. In
natural systems, nutrients (Jackson and Caldwell 1993,

Gallardo and Param�a 2007), soil organisms (e.g., Ping
et al. 2017, Wang et al. 2017) and other factors that
affect plant performance can vary widely among sam-
pling locations spaced a few meters and less apart, so
there is no assurance these factors are consistent across
experimental units (i.e., plots, plant neighborhoods).
Even within seemingly homogenous agricultural fields
where competition experiments sometimes occur (e.g.,
Rees et al. 1996, Rinella and Sheley 2005), temporal and
spatial growing condition variation is pervasive (e.g.,
Jaynes and Colvin 1997, Bakhsh et al. 2000), and there
is evidence this variation is extensive enough to affect
estimates of vital rates and competitive interactions
(Table 2 of Pacala and Silander 1990). Moreover, nutri-
ents and soil organisms vary spatiotemporally (e.g.,
Edwards 1984, Cain et al. 1999, Goldmann et al. 2019),
which erodes confidence that spatial (e.g., plot effects)
and temporal (year effects) parameters can be included
in models to control for unmeasured abiotic and biotic
variables (e.g., Lin et al. 2012). The tenuous, near univer-
sal assumption that variation in growing conditions has
negligible effects on estimates of plant interactions has
never been tested, and testing this assumption is the pri-
mary goal of this paper.
Next, we mathematically outline how omitted vari-

ables cause bias. Omitted variables bias estimates from
all traditional competition models fit to observational
and quasi-experimental data. For simplicity, and
because linear and generalized linear models are widely
used in plant interaction research, we begin by consider-
ing a linear model fit to data from an observational
study where targets and neighbors are measured once
within quadrats randomly distributed about a site. These
studies remain common (e.g., Fraterrigo et al. 2014, Soli-
veres et al. 2015, Pearson et al. 2016) despite decades-old
concerns about unmeasured variables causing bias
(Fig. 1A; Antonovics and Levin 1980). We assume tar-
get performance (e.g., growth, biomass) y is related to an
omitted variable x, neighbor abundance w, and random
error u by

yi ¼ b0 þ bxxi þ bwwi þ ui: (1)

We assume w is competitive (bw < 0) and think of x as
a variable that positively affects both y and w (Fig. 1A),
such as topsoil depth under target plant, quadrat, or
plot i. Because x is unknown, yi ¼ b�0 þ b�wwi þ u�i is fit
instead of Eq. 1. Consequently, instead of the true bw,
the estimate tends toward b�w ¼ bw þ c where c = bxcov
(w,x)/var(w). Recall that x positively affects y and w, so
bx, cov(w,x) and c are positive, and bw is overestimated
by c. Notice that if x negatively affects y and w, c
remains positive, and bw is still be overestimated by c.
Notice also that if x does not affect targets, then cov(w,
x) = 0, c = 0, and bw is unbiased. The expression for c
reveals consequences of other possibilities, such as x
positively effecting the target (bx > 0) and negatively
affecting the neighbor (cov(w,x) < 0).

FIG. 1. Following Pearl (1995), causal diagrams (A, B)
showing relationship between a neighbor plant variable w, a tar-
get plant variable y, an unmeasured variable x, and a measured
variable z. Arrows originate from variables that are unmeasured
and therefore excluded (dashed) or measured and therefore
included (solid) in plant interaction models. In A, the unmea-
sured variable x will cause omitted variable bias. In B, the
instrumental variable z allows omitted variable bias resulting
from x to be corrected using instrumental variable analysis. C
depicts a hypothetical competition experiment involving vari-
ables in A and B. Brown boxes represent field plots and differ-
ent size w and y represent plants of different sizes. Species w is
seeded at low and high rates, and species y is seeded at one rate.
Because both the density of w and the biomass per plot of y
increase with the unmeasured variable x (nitrogen concentra-
tion), a na€ıve plot or regression of y on w indicates w benefits y
even though w competes with y. Because z (seeding rate of w)
affects w but not y, z allows the biased regression estimate to be
corrected using instrumental variable analysis.
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In moving from linear to nonlinear models, and from
static data to time series data, consequences of omitted
variables remain similar, as we demonstrate in
Appendix S1 for a widely used competition model (e.g.,
Rees et al. 1996, Tuck et al. 2018). However, with some
nonlinear models, such as logistic regressions used for
modeling survival and colonization (e.g., Rees et al.
1996, Martorell and Freckleton 2014, Adler et al.
2018a), omitted variables that affect targets but not
neighbors will cause neighbor competition to be under-
estimated. This feature of logistic regression is generally
unknown among ecologists but is well described in other
fields (Wooldridge 2002, Mood 2010).
In this paper, we use instrumental variables analysis to

test for and correct omitted variable bias. We apply
instrumental variables analysis to three competition
studies. One study resembles controversial observational
studies described above (e.g., Fraterrigo et al. 2014, Soli-
veres et al. 2015, Pearson et al. 2016), so detecting omit-
ted variable bias would reinforce past warnings about
these studies (Antonovics and Levin 1980, Damgaard
and Weiner 2017). The other studies are quasi-experi-
mental and occurred in former agricultural fields (Wil-
son and Tilman 1993, Rinella and Sheley 2005), so
neighbors were partly controlled and environmental con-
ditions were presumably relatively homogenous. Detect-
ing even modest bias in these studies would encourage
caution about other study types more prone to omitted
variable bias, such as observational studies and quasi-ex-
periments in natural systems (e.g., Rees et al. 1996,
Godoy and Levine 2014, Martorell and Freckleton
2014). As explained in relation to Eq. 1 and in
Appendix S1, omitted variables that positively or nega-
tively affect both targets and neighbors cause competi-
tion to seem weaker than it truly is. Since plants
typically respond positively (e.g., nutrients) and nega-
tively (e.g., generalist pathogens) to the same factors, we
hypothesized omitted variables would cause competition
to seem weaker than it is. We do not formally test for
omitted variable bias in recently developed models that
failed predictive tests (Adler et al. 2018a, Tuck et al.
2018), though we will show omitted variable bias is a
likely cause of these model failures. The observational
data of Adler et al. (2018a) lacks instruments to allow
testing, but omitted variable bias will prove problematic
in similar data we analyze that does contain an instru-
ment. With the quasi-experiment of Tuck et al. (2018),
we use simulation to show prediction failures were likely
caused by omitted variables.

MATERIALS AND METHODS

Instrumental variables analysis

Explaining our research necessitates defining instru-
mental variables and briefly explaining instrumental
variable models. For those interested in the details,
Appendix S2 is a primer on instrumental variable

analysis, Appendix S3 fully explains our models, and
Appendix S4 explains our model fitting algorithm.
Instrumental variables analysis is not used in plant ecol-
ogy but is routine in the social sciences and medical
research (Angrist and Krueger 2001). Instrumental vari-
ables analysis allows omitted variable bias to be tested
for and corrected without knowing what the omitted
variables even are (Angrist and Krueger 2001). The anal-
ysis requires data on special variables called instruments
(Fig. 1B). The variable z is an instrument if it directly
affects the neighbor w but affects the target y only indi-
rectly by affecting w (Fig. 1B). The assumption that z
does not affect y except by affecting w is not statistically
testable (Angrist and Krueger 2001), so it must be justi-
fied via theory or subject matter knowledge. For exam-
ple, in an analysis of observational data, we will argue
that fall precipitation is a valid instrument for studying
effects of exotic winter annual grass neighbors on native
plant targets. Specifically, we will argue fall precipitation
regulates winter annual neighbor germination but is too
low to affect target plants. With quasi-experiments,
treatment variables are often valid instruments. For
example, the instrument in one of our analyses is a vari-
able equaling 0 or 1 if neighbors were or were not
removed with herbicide. This randomly assigned treat-
ment variable can affect the target only by affecting the
neighbor, so it is a valid instrument (Fig. 1B).
As is typically the case with instrumental variables

models, our models have two stages. The first stage pre-
dicts neighbors from instruments z and any other mea-
sured variables r

wi ¼
X
j

az;jzi;j þ
X
k

ar;kri;k þ vi: (2)

Subscripts i, j, and k reference experimental units,
instrumental variables, and other measured variables,
respectively. The second stage predicts targets from r
and the neighbor

yi ¼
X
k

br;kri;k þ bwwi þ ui: (3)

Errors, vi, and ui, are bivariate normal

vi
ui

� �
�N

0
0

� �
;

r2
1 r12

r12 r2
2

� �� �
: (4)

If r12 6¼ 0, omitted variables affect both targets and
neighbors. Setting r12 ¼ 0 instead of estimating it is
equivalent to adopting a typical one-stage competition
model that assume no omitted variables. More specifi-
cally, setting r12 ¼ 0 and fitting Eqs. 2–4 results in the
same estimate for bw as fitting Eq. 3 with ui �N 0;r2

2

� �
.

Observational study methods

Two similar exotic winter annual grasses, Bromus
arvensis L. and Bromus tectorum L., have invaded many
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western U.S. grasslands (Duncan et al. 2004). We esti-
mated competition of bromes with non-bromes at
ungrazed sites (Sites 1 and 2) with silty soils separated
by 8.6 km on the Fort Keogh Livestock and Range
Research Laboratory in Montana (46°22052.60″ N,
105°53003.29″ W). The dominant non-brome was the
perennial grass Pascopyrum smithii (Rydb.) �A. L€ove, and
other non-bromes included perennial grasses (Bouteloua
gracilis (Willd. ex Kunth.) Lag. ex Griffiths and Hesper-
ostipa comata (Trin. & Rupr.) Barkworth) and forbs
(Logfia arvensis (L.) Holub and Vicia americana Muhl.
ex Willd.). From 1994 to 2008 and in 2010, 2012, 2014,
2016, and 2018, all biomass produced in the March
through June growing season was clipped in early July
from 20 randomly placed 0.25-m2 circular quadrats per
site. Different quadrats were clipped different years, and
biomass was sorted by species, dried (72 h, 60°C) and
weighed.
Target and neighbor variables were (natural log)

total biomass per square meter of non-bromes and
bromes, respectively. Growing season (March through
June) precipitation was a predictor in first and sec-
ond stage models (Appendix S3: Eqs. S1, S2). Our
one instrument was precipitation the fall (September
and October) preceding the growing season. Bromes
germinate in fall, so fall precipitation regulates brome
seedling emergence and drives brome biomass the
next growing season (Haferkamp et al. 1998). There
are sound reasons to believe fall precipitation (z)
meets the instrumental variable criteria of affecting
non-bromes (y) only by affecting bromes (w)
(Fig. 1B). Bromes partly or fully utilize fall precipita-
tion before entering winter dormancy, which leaves
this precipitation unavailable to non-bromes the fol-
lowing growing season. Also, fall precipitation com-
prised just 17% � 8% (mean � SD) of annual
precipitation, whereas growing season precipitation
comprised 61% � 11% (NOAA station ≤15 km from
sites). For non-bromes, effects of high growing sea-
son precipitation should override effects of low pre-
cipitation from several months earlier.
On nearby (7 km) sites like ours, Haferkamp et al.

(1997, 1998) conducted brome removal experiments,
which provided an opportunity to compare our esti-
mates of brome competition to experimental bench-
marks. Removal experiments were quasi-experimental,
but instrumental variables estimates we derive from
their data can be considered experimental
(Appendix S3). Haferkamp et al. (1997) compared
hand removal of bromes to no removal at four sites
(one silty clay loam and one clay site in 1991 and
1992). Similarly, Haferkamp et al. (1998) factorially
combined removal treatments with three P. smithii
clipping treatments at two clay sites, one in 1993 and
one in 1995. Bromes were removed periodically from
early April through mid-May or early June, and
brome and non-brome biomass were measured early
to mid-July.

Quasi-experimental methods of Wilson and Tilman
(1993)

In a former farm field, Wilson and Tilman (1993)
replicated a factorial combination of nitrogen (with or
without ammonium nitrate) and disturbance (with or
without tillage) treatments in 5 9 5 m plots. Biomass
per perennial grass (Schizachyrium scoparium (Michx.)
Nash) transplant (log10y) was determined after trans-
plants grew four months in subplots where naturally
occurring neighbors (grasses and forbs) were present or
removed with herbicide. The neighbor variable was
log10(biomass) within 15 cm of the transplant. Our
instrument was a variable equaling 0 if neighbors were
removed, 1 otherwise (Appendix S3).

Quasi-experimental methods of Rinella and Sheley
(2005)

The exotic perennial forb Euphorbia esula L. infests
millions of hectares of western U.S. grasslands (Duncan
et al. 2004). To estimate competition of E. esula with
grasses, Rinella and Sheley (2005) randomly factorially
combined four Poa pratensis L. and six P. smithii seed
rates and six E. esula transplant densities in 1.0 9 1.0 m
plots arranged in a grid (12 columns 9 12 rows) in a for-
mer farm field. Biomass by species was measured the
fourth year after planting. Neighbor and target variables
were E. esula and total grass biomass (ln[g/m2]), respec-
tively, and instruments were variables equaling 0 or 1
depending on whether transplant density was 0, 4, 9, 16,
49, or 64 m�2 (Appendix S3: Eq. S3). The model had
P. pratensis and P. smithii seed rate main effects and
interactions and plot row, column, and row 9 column
terms to help control for spatial heterogeneity
(Appendix S3: Eqs. S3–S4).

RESULTS

Results for observational study

At Sites 1 and 2, bromes increased 370% (25%,
1,645%) and 432% (50%, 1,787%) with every 1-SD
increase in the instrument (fall precipitation). Therefore,
the criteria that the instrument affects the neighbor is
satisfied (Fig. 1B).
For Site 1, the regression model that assumed no

omitted variables by setting r12 ¼ 0 (Eq. 4) indicated a
mutualistic effect of bromes on non-bromes (bw > 0),
which conflicted with experimental benchmarks (Fig. 2).
When we estimated r12 instead of assuming r12 ¼ 0, r12

was positive 0.58 (0.20, 0.86) (mean and (95% CI)), and
this indicated omitted variables affected non-bromes and
bromes at Site 1. The instrumental variable model that
does not assume r12 ¼ 0 indicated bw < 0 for Site 1,
consistent with experimental benchmarks (Fig. 2). These
results support our hypothesis that omitted variables
cause competition to seem weaker than it is. The
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instrumental variables estimate for Site 1 is imprecise
(Fig. 2). If greater precision were required, Sites 1 and 2
could be analyzed jointly (we analyzed them separately)
to increase sample sizes for estimating parameters that
did not vary appreciably between sites (e.g., b2 of
Appendix S3: Eq. S2), or an informative prior distribu-
tion could be used. Compared to the instrumental vari-
ables estimate for Site 1, experimental estimates suggest
weaker competition (Fig. 2), though if experimental esti-
mates included confidence intervals most or all of them
would likely overlap the instrumental variable’s confi-
dence interval. Moreover, bromes grew awhile before
being removed, so removal experiments may have some-
what underestimated brome competition. For Site 2, r12

is nearly zero at �0.02 (�0.39, 0.35), so omitted variable
effects were trivial, and it would be logical to adopt the
more precise regression estimate for Site 2 (Fig. 2).

Results for Wilson and Tilman (1993)

Separately for each treatment combination, Wilson
and Tilman (1993) regressed seedling biomass on neigh-
bor biomass. Our instrumental variable estimates (data
not shown) are nearly identical to the original estimates
(Fig. 4 of Wilson and Tilman 1993), indicating omitted
variable effects were negligible.

Results for Rinella and Sheley (2005)

The E. esula transplant density variables we used as
instruments were statistically significant (P < 0.001;
Appendix S3). Despite including plot row and column
parameters to control for spatial variation in omitted

variables (Appendix S3: Eqs. S3,S4), r12 is 53 (23, 83),
indicating the presence of omitted variables. Compared
to the regression estimate, the instrumental variables
estimate indicates more intense competition (Fig. 3).
This result further confirms our hypothesis that, when
present, omitted variables cause competition to seem
weaker than it is.

DISCUSSION

The results support our hypothesis that omitted abiotic
(e.g., soil fertility) and biotic (i.e., soil biota) variables
cause competition to seem weaker than it truly is. In a
quasi-experiment, omitted variables caused competition
to be underestimated, and in observational data, omitted
variables caused competition to seem like mutualism.
Predictions from competition models are rarely evalu-

ated against independent test data, yet we know of three
studies besides ours’ where traditional competition mod-
els failed predictive tests (Pacala and Silander 1990, Adler
et al. 2018a, Tuck et al. 2018). In each study, omitted vari-
ables provide a compelling explanation for incorrect
model predictions. Pacala and Silander (1990) convinc-
ingly attribute incorrect predictions to competition,
growth rate and survival differences between plots used
to parameterize models and plots used to test models,
even though all their plots were within the same small
(30 9 60 m) agricultural field. It is hard to imagine these
parameter differences stemmed from anything but small-
scale variability in omitted environmental and/or soil
biota variables, especially since all plots were sown with
the same seed lots, which rules out genetic variation.
Like us, Adler et al. (2018a) developed models from

observational data and tested models using removal
treatments. And like our model that did not correct
omitted variable bias (Site 1 regression of Fig. 2), mod-
els of Adler et al. (2018a) generally indicated weaker
competition than removal treatments. This supports our
hypothesis that omitted variables cause models devel-
oped from observational data to underestimate competi-
tion. One model of Adler et al. (2018a) indicated
stronger competition than removal treatments, but the
authors were suspicious of this model for unrelated rea-
sons (i.e., low, episodic recruitment of the target shrub).

FIG. 2. Estimates of bw, a parameter describing the relation-
ship between log(brome biomass) (measured as g/m2) and log
(non-brome biomass). Negative values indicate bromes com-
peted with non-bromes. Regression and instrumental variables
(IV) estimates (point estimates and 95% CIs) are from observa-
tional data gathered at Sites 1 and 2, and estimates of Hafer-
kamp et al. (1997, 1998) are from removal experiments
conducted near Sites 1 and 2.

FIG. 3. Estimated percent increases (point estimates and
95% CIs) in grass biomass caused by reducing leafy spurge bio-
mass from the mean (560 g/m2) to one standard deviation
below the mean (220 g/m2) in a competition experiment. Esti-
mates are from regression and instrumental variables (IV) mod-
els.

June 2020 BIAS IN STUDIES OF PLANT INTERACTIONS Article e03020; page 5



Incorrect model predictions of Tuck et al. (2018) likely
resulted partly or wholly because they omitted treatment
variables from their models. Similar to us and Adler et al.
(2018a), Tuck et al. (2018) developed models using obser-
vations on target plants grown with interspecific competi-
tors and tested models using observations on targets
grown in monoculture, although Tuck et al. (2018) sowed
plants instead of studying natural communities. To create
density variation necessary for model fitting, Tuck et al.
(2018) used clipping to reduce seed production of their
seven annual species by 12.5%, 25%, 50%, 75%, or 87.5%
depending on plot, and they did not include these cate-
gorical clipping treatments in their models. (In keeping
with our paper’s theme, omitting clipping treatments is
like omitting, say, insect or nutrient variables that influ-
ence neighbor and target densities.) They clipped once
annually from 2010 to 2012, used plant densities mea-
sured before clipping in 2012 as their neighbor predictors
and used densities measured in 2013 as their target
response variables. By reducing target plant seed input,
clipping presumably directly reduced target densities, and
Tuck et al. (2018) indicate clipping directly reduced neigh-
bor densities. Therefore, all the conditions are in place for
omitted variable bias. Depending on species, models
under- or over-predicted competition intensity and
growth rates in monoculture plots (Fig. 2 of Tuck et al.
2018), and in Appendix S5 we show how omitted clipping
variables could have caused these incorrect predictions.
There may be additional reasons why models of Tuck
et al. (2018) failed predictive tests, but the most likely sin-
gle reason is omitted clipping variables.
An important theoretical prediction is that intraspeci-

fic competition exceeds interspecific competition, and a
recent review of many studies empirically supports this
prediction (Adler et al. 2018b). However, Detto et al.
(2019) believe results of Adler et al. (2018b) may reflect
measurement error bias. Yet, Detto et al. (2019) describe
too few situations where measurement errors compro-
mise competition estimates to account for findings from
many studies following diverse methods (Adler et al.
2018b). This led us to investigate whether omitted vari-
ables can bias comparisons of intraspecific and inter-
specific competition (Appendix S6). According to our
analysis, when the intraspecific competitor covaries most
strongly with the omitted variable, its competitive ability
is most underestimated, and when the interspecific com-
petitor covaries most strongly with the omitted variable,
its competitive ability is most underestimated. While our
analysis considered only linear models, we suspect this
finding holds for all models. Our analysis suggests omit-
ted variables could promote the incorrect conclusion that
interspecific competition exceeds intraspecific competi-
tion; bias in the opposite direction of that postulated by
Detto et al. (2019). To see how this might be, recall covari-
ation between omitted and target variables is a precondi-
tion for omitted variable bias (Fig. 1A). Where this
precondition is met, omitted variables might tend to cov-
ary more strongly with intraspecific than interspecific

competitors, because intraspecific competitors have the
same traits as the target. This opens the possibility that
Adler et al. (2018b) underestimate the extent to which
intraspecific competition exceeds interspecific competi-
tion.
How should plant interaction research proceed? Given

the heterogeneity of natural systems, and the bias this
heterogeneity causes, it is unsurprising that models built
from observational data fail predictive tests. Energy
devoted to gathering observational data seems better
devoted to manipulative studies. One exception is when
instruments are available, but observational data rarely
contain instruments. The most trustworthy estimates of
competitive interactions will come from true experi-
ments that eliminate the possibility of omitted variable
bias by completely controlling neighbor values. As we
show, trustworthy estimates can also be derived from
quasi-experiments by using treatment variables as instru-
ments. It is sometimes viewed as disadvantageous that
experimental and quasi-experimental approaches con-
struct or manipulate the community being studied
(Freckleton and Watkinson 2001). However, for plant
interaction research to progress, we must accurately pre-
dict how target plants will respond when neighbor abun-
dances are changed with everything else held constant. It
has become increasingly difficult to see how to make
these predictions without manipulative experiments.

ACKNOWLEDGMENTS

Author contributions: M. Rinella conceived the ideas; All
authors designed and implemented the data collection proto-
cols; M. Rinella analyzed the data and led writing of the
manuscript; L. Vermeire, and D. Strong contributed critically
to writing the manuscript and gave final approval for publi-
cation.

LITERATURE CITED

Adler, P. B., H. J. Dalgleish, and S. P. Ellner. 2012. Forecasting plant
community impacts of climate variability and change: When do
competitive interactionsmatter? Journal of Ecology 100:478–487.

Adler, P. B., A. Kleinhesselink, G. Hooker, J. B. Taylor, B. Teller,
and S. P. Ellner. 2018a. Weak interspecific interactions in a
sagebrush steppe? Conflicting evidence from observations
and experiments. Ecology 99:1621–1632.

Adler, P. B., D. Smull, K. H. Beard, R. T. Choi, T. Furniss, A.
Kulmatiski, J. M. Meiners, A. T. Tredennick, and K. E.
Veblen. 2018b. Competition and coexistence in plant commu-
nities: intraspecific competition is stronger than interspecific
competition. Ecology Letters 21:1319–1329.

Angrist, J. D., and A. B. Krueger. 2001. Instrumental variables and
the search for identification: From supply and demand to natural
experiments. Journal of Economic Perspectives 15:69–85.

Antonovics, J., andD. A. Levin. 1980. The ecological and genetic
consequences of density-dependent regulation in plants.
Annual Review of Ecology and Systematics 11:411–452.

Baker, M. 2016. Is there a reproducibility crisis? Nature
533:452–454.

Bakhsh, A., D. B. Jaynes, T. S. Colvin, and R. S. Kanwar. 2000.
Spatio-temporal analysis of yield variability for a corn-soy-
bean field in Iowa. Transactions of the American Society of
Agricultural Engineers 43:31–38.

Article e03020; page 6 MATTHEW J. RINELLA ETAL. Ecology, Vol. 101, No. 6



Cain, M. L., S. Subler, J. P. Evans, and M. Fortin. 1999. Sam-
pling spatial and temporal variation in soil nitrogen availabil-
ity. Oecologia 118:397–404.

Damgaard, C., and J. Weiner. 2017. It’s about time: a critique
of macroecological inferences concerning plant competition.
Trends in Ecology & Evolution 32:86–87.

Detto, M., M. D. Visser, J. S. Wright, and S. W. Pacala. 2019.
Bias in the detection of negative density dependence in plant
communities. Ecology Letters 22:1923–1939.

Duncan, C. A., J. J. Jachetta, M. L. Brown, V. F. Carrithers, J.
K. Clark, J. M. DiTomaso, R. G. Lym, K. C. McDaniel, M.
J. Renz, and P. M. Rice. 2004. Assessing the economic, envi-
ronmental, and societal losses from invasive plants on range-
land and wildlands. Weed Technology 18:1411–1416.

Edwards, P. J. 1984. The growth of fairy rings of Agaricus arven-
sis and their effect upon grassland vegetation and soil. Jour-
nal of Ecology 72:505–513.

Fidler, F., Y. E. Chee, B. C. Wintle, M. A. Burgman, M. A.
McCarthy, and A. Gordon. 2017. Metaresearch for evaluating
reproducibility in ecology and evolution. BioScience 67:282–289.

Fraterrigo, J. M., S. Wagner, and R. J. Warren. 2014. Local-
scale biotic interactions embedded in macroscale climate dri-
vers suggest Eltonian noise hypothesis distribution patterns
for an invasive grass. Ecology Letters 17:1447–1454.

Freckleton, R. P., and A. R. Watkinson. 2001. Nonmanipula-
tive determination of plant community dynamics. Trends in
Ecology & Evolution 16:301–307.

Gallardo, A., and R. Param�a. 2007. Spatial variability of soil
elements in two plant communities of NW Spain. Geoderma
139:199–208.

Gelman, A., and J. Hill.2007. Data analysis using regression
and multilevel/hierarchical models. Cambridge University
Press, New York, New York, USA.

Godoy, O., and J. M. Levine. 2014. Phenology effects on inva-
sion success: insights from coupling field experiments to coex-
istence theory. Ecology 95:726–736.

Goldmann, K., et al. 2019. Unraveling spatiotemporal variabil-
ity of arbuscular mycorrhizal fungi in a temperate grassland
plot. Environmental Microbiology. https://doi.org/10.1111/
1462-2920.14653

Haferkamp, M. R., R. K. Heitschmidt, and M. G. Karl. 1997.
Influence of Japanese brome on western wheatgrass yield.
Journal of Range Management 50:44–50.

Haferkamp, M. R., R. K. Heitschmidt, and M. G. Karl. 1998.
Clipping and Japanese brome reduce western wheatgrass
standing crop. Journal of Range Management 51:692–698.

Hart, S.M., R. P. Freckleton, and J.M. Levine. 2018. How to quan-
tify competitive ability. Journal of Ecology 106:1902–1909.

Jackson, R. B., and M. M. Caldwell. 1993. Geostatistical pat-
terns of soil heterogeneity around individual plants. Journal
of Ecology 81:683–692.

Jaynes, D. B., and T. S. Colvin. 1997. Spatiotemporal variability
of corn and soybean yield. Agronomy Journal 89:30–37.

Lin, L., L. S. Comita, Z. Zheng, and M. Cao. 2012. Seasonal
differentiation in density-dependent seedling survival in a
tropical rain forest. Journal of Ecology 100:905–914.

Martorell, C., and R. P. Freckleton. 2014. Testing the roles of
competition, facilitation and stochasticity on community

structure in a species-rich assemblage. Journal of Ecology
102:74–85.

Mood, C. 2010. Logistic regression: why we cannot do what we
think we can do, and what we can do about It. European
Sociological Review 26:67–82.

Pacala, S. W., and J. A. Silander. 1990. Field tests of neighbor-
hood population dynamic models of two annual weed species.
Ecological Monographs 60:113–134.

Parker, I. M., et al. 1999. Impact: toward a framework for
understanding the ecological effects of invaders. Biological
Invasions 1:3–19.

Pearl, J.1995. Causal diagrams for empirical research. Biome-
trika 82:Causal diagrams for empirical research. Biometrika
82: 669–688.

Pearson, D. E., Y. K. Ortega, €O. Eren, and J. L. Hierro. 2016.
Quantifying “apparent” impact and distinguishing impact
from invasiveness in multispecies plant invasions. Ecological
Applications 26:162–173.

Petry, W. K., G. S. Kandlikar, N. J. B. Kraft, O. Godoy, and J.
M. Levine. 2018. A competition-defence trade-off both pro-
motes and weakens coexistence in an annual plant commu-
nity. Journal of Ecology 106:1806–1818.

Ping, Y. A., D. X. Han, N. Wang, Y. B. Hu, L. Q. Mu, and F. J.
Feng. 2017. Vertical zonation of soil fungal community struc-
ture in a Korean pine forest on Changbai Mountain, China.
World Journal of Microbiology and Biotechnology 33:12.

Rees, M., P. J. Grubb, and D. Kelly. 1996. Quantifying the
impact of competition and spatial heterogeneity on the struc-
ture and dynamics of a four-species guild of winter annuals.
American Naturalist 147:1–32.

Rencher, A. C. 2000. Linear models in statistics. John Wiley &
Sons, New York, New York, USA.

Rinella, M. J., M. L. Pokorny, and R. Rekaya. 2007. Grassland
invader responses to realistic changes in native species rich-
ness. Ecological Applications 17:1824–1831.

Rinella, M. J., and R. L. Sheley. 2005. A model for predicting
invasive weed and grass dynamics. I. Model development.
Weed Science 53:586–593.

Soliveres, S., et al. 2015. Intransitive competition is widespread
in plant communities and maintains their species richness.
Ecology Letters 18:790–798.

Thompson, K. A., B. C. Husband, and H. Maherali. 2015. No
influence of water limitation on the outcome of competition
between diploid and tetraploid Chamerion angustifolium
(Onagraceae). Journal of Ecology 103:733–741.

Tuck, S. L., J. Porter, M. Rees, and L. A. Turnbull. 2018. Strong
responses from weakly interacting species. Ecology Letters
21:1845–1852.

Wang, R. Z., M. Dorodnikov, F. A. Dijkstra, S. Yang, Z. W.
Xu, H. Li, and Y. Jiang. 2017. Sensitivities to nitrogen and
water addition vary among microbial groups within soil
aggregates in a semiarid grassland. Biology and Fertility of
Soils 53:129–140.

Wilson, S. D., and D. Tilman. 1993. Plant competition and
resource availability in response to disturbance and fertiliza-
tion. Ecology 74:599–611.

Wooldridge, J. M. 2002. Econometric analysis of cross section
and panel data. MIT Press, Cambridge, Massachusetts, USA.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
10.1002/ecy.3020/suppinfo

June 2020 BIAS IN STUDIES OF PLANT INTERACTIONS Article e03020; page 7

https://doi.org/10.1111/1462-2920.14653
https://doi.org/10.1111/1462-2920.14653
http://onlinelibrary.wiley.com/doi/10.1002/ecy.3020/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecy.3020/suppinfo

